

Donor 6852

Genetic Testing Summary

Fairfax Cryobank recommends reviewing this genetic testing summary with your healthcare provider to determine suitability.

Last Updated: 07/26/23

Donor Reported Ancestry: African American

Jewish Ancestry: No

Genetic Test*	Result	Comments/Donor's Residual
		Risk**

Chromosome analysis (karyotype)	Normal male karyotype	No evidence of clinically significant chromosome abnormalities
Hemoglobin evaluation	Normal hemoglobin fractionation and MCV/MCH results	Reduced risk to be a carrier for sickle cell anemia, beta thalassemia, alpha thalassemia trait (aa/ and a-/a-) and other hemoglobinopathies
Expanded Genetic Disease Carrier Screening Panel attached- 557 diseases by gene sequencing.	Negative for genes sequenced.	Partner testing recommended before using this donor. Residual risks for negative results can be seen here: <u>https://www.invitae.com/carrier-residual- risks/</u>

*No single test can screen for all genetic disorders. A negative screening result significantly reduces, but cannot eliminate, the risk for these conditions in a pregnancy.

**Donor residual risk is the chance the donor is still a carrier after testing negative.

Patient name: DOB: Sex assigned at birth: Gender: Patient ID (MRN):	Donor 6852 Male	Sample type: Sample collection date: Sample accession date:	Blood 17-JAN-2023 18-JAN-2023	Report date: Invitae #: Clinical team:	03-FEB-2023
Reason for testing Gamete donor		Invi	t performed tae Comprehensive Ca Primary Panel (CF, SN Add-on Comprehensi	MA)	nes

RESULT: NEGATIVE

This carrier test evaluated 557 gene(s) for genetic changes (variants) that are associated with an increased risk of having a child with a genetic condition. Knowledge of carrier status for one of these conditions may provide information that can be used to assist with family planning and/or preparation. Carrier screening is not intended for diagnostic purposes. To identify a potential genetic basis for a condition in the individual being tested, diagnostic testing for the gene(s) of interest is recommended.

This test did not identify any genetic changes in the gene(s) analyzed that are currently recognized as clinically significant. This negative result reduces, but does not eliminate, the chance that this individual is a carrier for conditions caused by any of the genes tested. This individual may still be a carrier for a genetic condition that is not evaluated by this test.

Next steps

- Even for genes that have a negative test result, there is always a small risk that an individual could still be a carrier. This is called "residual risk." See the Carrier detection rates and residual risks document.
- Discussion with a physician and/or genetic counselor is recommended to further review the implications of this test result and to understand these results in the context of any family history of a genetic condition.
- All patients, regardless of result, may wish to consider additional screening for hemoglobinopathies by complete blood count (CBC) and hemoglobin electrophoresis, if this has not already been completed.
- Individuals can register their tests at https://www.invitae.com/patients/ to access online results, educational resources, and next steps.

Invitae #:

Results to note

FMR1

Normal triplet repeats observed: 35. CGG repeat ranges: normal (<45 CGG repeats), intermediate (45-54 CGG repeats), premutation (55-200 CGG repeats), full mutation (>200 CGG repeats).

SMN1

Negative result. SMN1: 3 copies

Pseudodeficiency allele(s)

- Benign changes, c.1685T>C (p.Ile562Thr), known to be pseudodeficiency alleles, identified in the GALC gene. Pseudodeficiency alleles are not known to be associated with disease, including Krabbe disease.
- The presence of a pseudodeficiency allele does not impact this individual's risk to be a carrier. Individuals with pseudodeficiency alleles may exhibit false positive results on related biochemical tests, including newborn screening. However, pseudodeficiency alleles are not known to cause disease, even when there are two copies of the variant (homozygous) or when in combination with another disease-causing variant (compound heterozygous). Carrier testing for the reproductive partner is not indicated based on this result.

Residual risk

No carrier test can detect 100% of carriers. There still remains a small risk of being a carrier after a negative test (residual risk). Residual risk values assume a negative family history and are inferred from published carrier frequencies and estimated detection rates based on testing technologies used at Invitae. You can view Invitae's complete Carrier detection rates and residual risks document (containing all carrier genes) online at https://www.invitae.com/carrier-residual-risks/. Additionally, the order-specific information for this report is available to download in the portal (under this order's documents) or can be requested by contacting Invitae Client Services. The complete Carrier detection rates and residual risks document will not be applicable for any genes with specimen-specific limitations in sequencing and/or deletion/duplication coverage. Please see the final bullet point in the Limitations section of this report to view if this specimen had any gene-specific coverage gaps.

Invitae #:

Genes analyzed

This table represents a complete list of genes analyzed for this individual, including the relevant gene transcript(s). If more than one transcript is listed for a single gene, variants were reported using the first transcript listed unless otherwise indicated in the report. An asterisk (*) indicates that this gene has a limitation. Please see the Limitations section for details. Results are negative, unless otherwise indicated in the report.

GENE	TRANSCRIPT	GENE	TRANSCRIPT	GENE	TRANSCRIPT
AAAS	NM_015665.5	AMT	NM_000481.3	BMP1	NM_006129.4;NM_001199.3
ABCA12	NM_173076.2	ANO10*	NM_018075.3	BRIP1	NM_032043.2
ABCA3	NM_001089.2	AP1S1	NM_001283.3	BSND	NM_057176.2
ABCA4	NM_000350.2	AQP2	NM_000486.5	BTD	NM_000060.3
ABCB11	NM_003742.2	AR*	NM_000044.3	ВТК	NM_000061.2
ABCB4	NM_000443.3	ARG1	NM_000045.3	CAD	NM_004341.4
ABCC2*	NM_000392.4	ARL6	NM_177976.2	CANT1	NM_138793.3
ABCC8	NM_000352.4	ARSA	NM_000487.5	CAPN3	NM_000070.2
ABCD1	NM_000033.3	ARSB	NM_000046.3	CASQ2	NM_001232.3
ACAD9	NM_014049.4	ARSE	NM_000047.2	CBS	NM_000071.2
ACADM	NM_000016.5	ARX*	NM_139058.2	CC2D1A	NM_017721.5
ACADVL	NM_000018.3	ASL	NM_000048.3	CC2D2A	NM_001080522.2
ACAT1	NM_000019.3	ASNS	NM_133436.3	CCDC103	NM_213607.2
ACOX1	NM_004035.6	ASPA	NM_000049.2	CCDC39	NM_181426.1
ACSF3	NM_174917.4	ASS1	NM_000050.4	CCDC88C	NM_001080414.3
ADA	NM_000022.2	ATM*	NM_000051.3	CD3D	NM_000732.4
ADAMTS2	NM_014244.4	ATP6V1B1	NM_001692.3	CD3E	NM_000733.3
ADAMTSL4	NM_019032.5	ATP7A	NM_000052.6	CD40	NM_001250.5
ADGRG1	NM_005682.6	ATP7B	NM_000053.3	CD40LG	NM_000074.2
ADGRV1	NM_032119.3	ATP8B1*	NM_005603.4	CD59	NM_203330.2
AGA	NM_000027.3	ATRX	NM_000489.4	CDH23	NM_022124.5
AGL	NM_000642.2	AVPR2	NM_000054.4	CEP152	NM_014985.3
AGPS	NM_003659.3	BBS1	NM_024649.4	CEP290	NM_025114.3
AGXT	NM_000030.2	BBS10	NM_024685.3	CERKL	NM_001030311.2
AHI1	NM_017651.4	BBS12	NM_152618.2	CFTR*	NM_000492.3
AIPL1*	NM_014336.4	BBS2	NM_031885.3	CHAT	NM_020549.4
AIRE	NM_000383.3	BBS4	NM_033028.4	СНМ	NM_000390.2
ALDH3A2	NM_000382.2	BBS5	NM_152384.2	CHRNE	NM_000080.3
ALDH7A1	NM_001182.4	BBS7	NM_176824.2	CHRNG	NM_005199.4
ALDOB	NM_000035.3	BBS9*	NM_198428.2	CIITA	NM_000246.3
ALG1	NM_019109.4	BCKDHA	NM_000709.3	CLCN1	NM_000083.2
ALG13	NM_001099922.2	BCKDHB	NM_183050.2	CLN3	NM_001042432.1
ALG6	NM_013339.3	BCS1L	NM_004328.4	CLN5	NM_006493.2
ALMS1	NM_015120.4	BLM	NM_000057.3	CLN6	NM_017882.2
ALPL	NM_000478.5	BLOC1S3	NM_212550.4	CLN8	NM_018941.3
AMN*	NM_030943.3	BLOC1S6	NM_012388.3	CLRN1	NM_174878.2

GENE	TRANSCRIPT	GENE	TRANSCRIPT	GENE	TRANSCRIPT
CNGB3	NM_019098.4	DHDDS	NM_024887.3	FANCA	NM_000135.2
COL11A2*	NM_080680.2	DKC1	NM_001363.4	FANCB	NM_001018113.1
COL17A1	NM_000494.3	DLD	NM_000108.4	FANCC	NM_000136.2
COL27A1	NM_032888.3	DLL3	NM_016941.3	FANCD2*	NM_033084.3
COL4A3	NM_000091.4	DMD	NM_004006.2	FANCE	NM_021922.2
COL4A4	NM_000092.4	DNAH11	NM_001277115.1	FANCG	NM_004629.1
COL4A5	NM_000495.4	DNAH5	NM_001369.2	FANCI	NM_001113378.1
COL7A1	NM_000094.3	DNAI1	NM_012144.3	FANCL*	NM_018062.3
COX15	NM_004376.6	DNAI2	NM_023036.4	FBP1	NM_000507.3
CPS1	NM_001875.4	DNMT3B	NM_006892.3	FBXO7	NM_012179.3
CPT1A	NM_001876.3	DOK7	NM_173660.4	FH*	NM_000143.3
CPT2	NM_000098.2	DUOX2*	NM_014080.4	FHL1	NM_001449.4
CRB1	NM_201253.2	DYNC2H1	NM_001080463.1	FKBP10	NM_021939.3
CRTAP	NM_006371.4	DYSF	NM_003494.3	FKRP	NM_024301.4
CTNS	NM_004937.2	EDA	NM_001399.4	FKTN	NM_001079802.1
CTSA	NM_000308.3	EIF2AK3	NM_004836.6	FMO3	NM_006894.6
стѕс	NM_001814.5	EIF2B1	NM_001414.3	FMR1*	NM_002024.5
CTSD	NM_001909.4	EIF2B2	NM_014239.3	FOXN1	NM_003593.2
стѕк	NM_000396.3	EIF2B3	NM_020365.4	FOXRED1	NM_017547.3
СҮВА	NM_000101.3	EIF2B4	NM_015636.3	FRAS1	NM_025074.6
СҮВВ	NM_000397.3	EIF2B5	NM_003907.2	FREM2	NM_207361.5
CYP11A1	NM_000781.2	ELP1	NM_003640.3	FUCA1	NM_000147.4
CYP11B1	NM_000497.3	EMD	NM_000117.2	G6PC	NM_000151.3
CYP11B2	NM_000498.3	EPG5	NM_020964.2	G6PC3	NM_138387.3
CYP17A1	NM_000102.3	ERCC2	NM_000400.3	GAA	NM_000152.3
CYP19A1	NM_031226.2	ERCC6	NM_000124.3	GALC*	NM_000153.3
СҮР1В1	NM_000104.3	ERCC8	NM_000082.3	GALE*	NM_000403.3
CYP21A2*	NM_000500.7	ESCO2	NM_001017420.2	GALK1	NM_000154.1
CYP27A1	NM_000784.3	ETFA	NM_000126.3	GALNS	NM_000512.4
CYP27B1	NM_000785.3	ETFB	NM_001985.2	GALNT3	NM_004482.3
CYP7B1	NM_004820.3	ETFDH	NM_004453.3	GALT	NM_000155.3
DBT	NM_001918.3	ETHE1	NM_014297.3	GAMT	NM_000156.5
DCAF17	NM_025000.3	EVC	NM_153717.2	GATM	NM_001482.2
DCLRE1C	NM_001033855.2	EVC2	NM_147127.4	GBA*	NM_001005741.2
DDX11*	NM_030653.3	EXOSC3	NM_016042.3	GBE1	NM_000158.3
DFNB59	NM_001042702.3	EYS*	NM_001142800.1	GCDH	NM_000159.3
DGAT1	NM_012079.5	F9	NM_000133.3	GCH1	NM_000161.2
DGUOK	NM_080916.2	FAH*	NM_000137.2	GDF5	NM_000557.4
DHCR7	NM_001360.2	FAM161A	NM_001201543.1	GFM1	NM_024996.5

GENE	TRANSCRIPT	GENE	TRANSCRIPT	GENE
GHR*	NM_000163.4	HPS4	NM_022081.5	LRAT
GJB1	NM_000166.5	HPS5	NM_181507.1	LRP2
GJB2	NM_004004.5	HPS6	NM_024747.5	LRPPRC
GLA	NM_000169.2	HSD17B10	NM_004493.2	LYST
GLB1	NM_000404.2	HSD17B3	NM_000197.1	МАК
GLDC	NM_000170.2	HSD17B4	NM_000414.3	MAN2B1
GLE1	NM_001003722.1	HSD3B2	NM_000198.3	MANBA
GNE*	NM_001128227.2	HYAL1	NM_153281.1	MCEE
GNPAT	NM_014236.3	HYLS1	NM_145014.2	MCOLN1
GNPTAB	NM_024312.4	IDS*	NM_000202.6	MCPH1
GNPTG	NM_032520.4	IDUA	NM_000203.4	MECP2
GNS	NM_002076.3	IGHMBP2	NM_002180.2	
GORAB	NM_152281.2	ІКВКВ	NM_001556.2	MECR
GRHPR	NM_012203.1	IL2RG	NM_000206.2	MED17
GRIP1	NM_021150.3	IL7R	NM_002185.3	MESP2
GSS	NM_000178.2	INVS	NM_014425.3	MFSD8
GUCY2D	NM_000180.3	ITGA6	NM_000210.3	MID1*
GUSB	NM_000181.3	ITGB3	NM_000212.2	MKKS
HADH	NM_005327.4	ITGB4	NM_001005731.2	MKS1
HADHA	NM_000182.4	IVD	NM_002225.3	MLC1*
HADHB	NM_000183.2	JAK3	NM_000215.3	MLYCD
НАМР	NM_021175.2	KCNJ1	NM_000220.4	MMAA
HAX1	NM_006118.3	KCNJ11	NM_000525.3	ММАВ
HBA1*	NM_000558.4	LICAM	NM_000425.4	ММАСНС
HBA2	NM_000517.4	LAMA2	NM_000426.3	MMADHO
HBB	NM_000518.4	LAMA3	NM_000227.4	MOCS1
HCFC1	NM_005334.2	LAMB3	NM_000228.2	MOCS2A
HEXA	NM_000520.4	LAMC2	NM_005562.2	MOCS2B
HEXA	NM_000521.3	LARGE1	NM_004737.4	MPI
HGSNAT	NM_000321.3	LCA5	NM_181714.3	MPL
HJV	NM_132419.2 NM_213653.3	LDLR	NM_181714.3 NM_000527.4	MPV17
HJV HLCS	NM_213653.3 NM_000411.6	LDLR LDLRAP1	NM_000527.4 NM_015627.2	MRE11
HICS	NM_000411.6 NM_000191.2	LDLRAPT LHX3	NM_013627.2 NM_014564.4	MTHFR*
				MTM1
HMOX1	NM_002133.2	LIFR*	NM_002310.5	MTR
HOGA1	NM_138413.3	LIG4	NM_002312.3	MTRR
HPD	NM_002150.2	LIPA	NM_000235.3	MTTP
HPRT1	NM_000194.2	LMBRD1	NM_018368.3	MUSK
HPS1	NM_000195.4	LOXHD1	NM_144612.6	MUT
HPS3	NM_032383.4	LPL	NM_000237.2	MVK

GENE	TRANSCRIPT	GENE	TRANSCRIPT	GENE	TRANSCRIPT
MYO15A	NM_016239.3	PCCA	NM_000282.3	PPT1	NM_000310.3
MYO7A	NM_000260.3	РССВ	NM_000532.4	PRCD	NM_001077620.2
NAGA	NM_000262.2	PCDH15	NM_033056.3	PRDM5	NM_018699.3
NAGLU	NM_000263.3	PCNT	NM_006031.5	PRF1	NM_001083116.1
NAGS	NM_153006.2	PDHA1	NM_000284.3	PROP1	NM_006261.4
NBN	NM_002485.4	PDHB	NM_000925.3	PRPS1	NM_002764.3
NCF2	NM_000433.3	PEPD	NM_000285.3	PSAP	NM_002778.3
NDRG1	NM_006096.3	PET100	NM_001171155.1	PTPRC*	NM_002838.4
NDUFAF2	NM_174889.4	PEX1*	NM_000466.2	PTS	NM_000317.2
NDUFAF5	NM_024120.4	PEX10	NM_153818.1	PUS1	NM_025215.5
NDUFS4	NM_002495.3	PEX12	NM_000286.2	PYGM	NM_005609.3
NDUFS6	NM_004553.4	PEX13	NM_002618.3	QDPR	NM_000320.2
NDUFS7	NM_024407.4	PEX16	NM_004813.2	RAB23	NM_183227.2
NDUFV1	NM_007103.3	PEX2	NM_000318.2	RAG1	NM_000448.2
NEB*	NM_001271208.1	PEX26	NM_017929.5	RAG2	NM_000536.3
NEU1	NM_000434.3	PEX5	NM_001131025.1	RAPSN	NM_005055.4
NGLY1	NM_018297.3	PEX6	NM_000287.3	RARS2	NM_020320.3
NPC1	NM_000271.4	PEX7	NM_000288.3	RDH12	NM_152443.2
NPC2	NM_006432.3	PFKM	NM_000289.5	RLBP1	NM_000326.4
NPHP1	NM_000272.3	PGM3	NM_001199917.1	RMRP	NR_003051.3
NPHS1	NM_004646.3	PHGDH	NM_006623.3	RNASEH2A	NM_006397.2
NPHS2	NM_014625.3	РНКВ	NM_000293.2;NM_00103183	RNASEH2B	NM_024570.3
NR0B1	NM_000475.4		5.2	RNASEH2C	NM_032193.3
NR2E3	NM_014249.3	PHKG2	NM_000294.2	RP2	NM_006915.2
NSMCE3	NM_138704.3	PHYH	NM_006214.3	RPE65	NM_000329.2
NTRK1	NM_001012331.1	PIGN	NM_176787.4	RPGRIP1L	NM_015272.2
OAT*	NM_000274.3	PKHD1*	NM_138694.3	RS1	NM_000330.3
OCA2	NM_000275.2	PLA2G6	NM_003560.2	RTEL1	NM_001283009.1
OCRL	NM_000276.3	PLEKHG5	NM_020631.4	RXYLT1	NM_014254.2
OPA3	NM_025136.3	PLOD1	NM_000302.3	RYR1	NM_000540.2
OSTM1	NM_014028.3	PLP1	NM_000533.4	SACS	NM_014363.5
OTC	NM_000531.5	PMM2	NM_000303.2	SAMD9	NM_017654.3
OTOA*	NM_144672.3	PNPO	NM_018129.3	SAMHD1	NM_015474.3
OTOF	NM_194248.2;NM_194323.2	POLG	NM_002693.2	SCO2	NM_005138.2
P3H1	NM_022356.3	POLH	NM_006502.2	SEC23B	NM_006363.4
РАН	NM_000277.1	POMGNT1	NM_017739.3	SEPSECS	NM_016955.3
PANK2	NM_153638.2	POMT1	NM_007171.3	SGCA	NM_000023.2
PC	NM_000920.3	POMT2	NM_013382.5	SGCB	NM_000232.4
PCBD1	NM_000281.3	POR	NM_000941.2	SGCD	NM_000337.5
		POU1F1	NM_000306.3		

GENE	TRANSCRIPT	GENE	TRANSCRIPT	GENE	TRANSCRIPT
SGCG	NM_000231.2	SUOX	NM_000456.2	UNC13D	NM_199242.2
SGSH	NM_000199.3	SURF1	NM_003172.3	USH1C*	NM_005709.3
SKIV2L	NM_006929.4	SYNE4	NM_001039876.2	USH2A	NM_206933.2
SLC12A1	NM_000338.2	TANGO2	NM_152906.6	VDR	NM_001017535.1
SLC12A3	NM_000339.2	TAT	NM_000353.2	VLDLR	NM_003383.4
SLC12A6	NM_133647.1	TAZ	NM_000116.4	VPS11	NM_021729.5
SLC17A5	NM_012434.4	TBCD	NM_005993.4	VPS13A*	NM_033305.2
SLC19A2	NM_006996.2	TBCE*	NM_003193.4	VPS13B	NM_017890.4
SLC19A3	NM_025243.3	TCIRG1	NM_006019.3	VPS45	NM_007259.4
SLC1A4	NM_003038.4	TCN2	NM_000355.3	VPS53*	NM_001128159.2
SLC22A5	NM_003060.3	TECPR2	NM_014844.3	VRK1	NM_003384.2
SLC25A13	NM_014251.2	TERT	NM_198253.2	VSX2	NM_182894.2
SLC25A15	NM_014252.3	TF	NM_001063.3	WAS	NM_000377.2
SLC25A20	NM_000387.5	TFR2	NM_003227.3	WISP3	NM_003880.3
SLC26A2	NM_000112.3	TG*	NM_003235.4	WNT10A	NM_025216.2
SLC26A3	NM_000111.2	TGM1	NM_000359.2	WRN*	NM_000553.4
SLC26A4	NM_000441.1	тн	NM_199292.2	ХРА	NM_000380.3
SLC27A4	NM_005094.3	TK2	NM_004614.4	XPC	NM_004628.4
SLC35A3	NM_012243.2	TMC1	NM_138691.2	ZBTB24	NM_014797.2
SLC37A4	NM_001164277.1	TMEM216	NM_001173990.2	ZFYVE26	NM_015346.3
SLC38A8	NM_001080442.2	TMEM67	NM_153704.5	ZNF469	NM_001127464.2
SLC39A4	NM_130849.3	TMPRSS3	NM_024022.2		
SLC45A2	NM_016180.4	TPO	NM_000547.5		
SLC4A11	NM_032034.3	TPP1	NM_000391.3		
SLC5A5	NM_000453.2	TREX1	NM_033629.4		
SLC6A8	NM_005629.3	TRIM32	NM_012210.3		
SLC7A7	NM_001126106.2	TRIM37	NM_015294.4		
SMARCAL1	NM_014140.3	TRMU	NM_018006.4		
SMN1*	NM_000344.3	TSEN54	NM_207346.2		
SMPD1	NM_000543.4	TSFM*	NM_001172696.1		
SNAP29	NM_004782.3	TSHB	NM_000549.4		
SPG11	NM_025137.3	TSHR	NM_000369.2		
SPR	NM_003124.4	TTC37	NM_014639.3		
SRD5A2	NM_000348.3	ТТРА	NM_000370.3		
ST3GAL5	NM_003896.3	TULP1	NM_003322.4		
STAR	NM_000349.2	ТҮМР	NM_001953.4		
STX11	NM_003764.3	TYR*	NM_000372.4		
STXBP2	NM_006949.3	TYRP1	NM_000550.2		
SUMF1	NM_182760.3	UBR1	NM_174916.2		

DOB:

Patient name: Donor 6852

Invitae #:

Methods

- Genomic DNA obtained from the submitted sample is enriched for targeted regions using a hybridization-based protocol, and sequenced using Illumina technology. Unless otherwise indicated, all targeted regions are sequenced with ≥50x depth or are supplemented with additional analysis. Reads are aligned to a reference sequence (GRCh37), and sequence changes are identified and interpreted in the context of a single clinically relevant transcript, indicated in the Genes analyzed section. Enrichment and analysis focus on the coding sequence of the indicated transcripts, 20bp of flanking intronic sequence, and other specific genomic regions demonstrated to be causative of disease at the time of assay design. Promoters, untranslated regions, and other non-coding regions are not otherwise interrogated. Exonic deletions and duplications are called using an in-house algorithm that determines copy number at each target by comparing the read depth for each target in the proband sequence with both mean read-depth and read-depth distribution, obtained from a set of clinical samples. Markers across the X and Y chromosomes are analyzed for guality control purposes and may detect deviations from the expected sex chromosome complement. Such deviations may be included in the report in accordance with internal guidelines. Invitae utilizes a classification methodology to identify next-generation sequencing (NGS)-detected variants that require orthogonal confirmation (Lincoln, et al. J Mol Diagn. 2019 Mar;21(2):318-329.). Confirmation of the presence and location of reportable variants is performed based on stringent criteria established by Invitae (1400 16th Street, San Francisco, CA 94103, #05D2040778), as needed, using one of several validated orthogonal approaches (PubMed ID 30610921). The following analyses are performed if relevant to the requisition. For GBA the reference genome has been modified to mask the sites of polymorphic paralog sequence variants (PSVs) in both the gene and pseudogene. For CYP21A2 and GBA, if one or more reportable variants, gene conversion, or fusion event is identified via our NGS pipeline (see Limitations), these variants are confirmed by PacBio sequencing of an amplicon generated by long-range PCR and subsequent short-range PCR. In some cases, it may not be possible to disambiguate between the gene and pseudogene. For GJB2, the reportable range includes large upstream deletions overlapping GJB6. For HBA1/2, the reference genome has been modified to force some sequencing reads derived from HBA1 to align to HBA2, and variant calling algorithms are modified to support an expectation of 4 alleles in these regions. HBA1/2 copy number calling is performed by a custom hypothesis testing algorithm which generates diplotype calls. If sequence data for a sample does not support a unique high confidence match from among hypotheses tested, that sample is flagged for manual review. Copy number variation is only reported for coding sequence of HBA1 and HBA2 and the HS-40 region. This assay does not distinguish among the $-\alpha$ 3.7 subtypes, and all $-\alpha 3.7$ variants are called as HBA1 deletions. This assay may not detect overlapping copy gain and copy loss events when the breakpoints of those events are similar. For FMR1, triplet repeats are detected by PCR with fluorescently labeled primers followed by capillary electrophoresis. Reference ranges: Normal: <45 CGG repeats, intermediate: 45-54 CGG repeats, premutation: 55-200 CGG repeats, full mutation: >200 CGG repeats. For alleles with 55-90 triplet repeats, the region surrounding the FMR1 repeat is amplified by PCR. The PCR amplicons are then processed through PacBio SMRTBell library prep and sequenced using PacBio long read technology. The number of AGG interruptions within the 55-90 triplet repeat is read directly from the resulting DNA sequences. Technical component of confirmatory sequencing is performed by Invitae Corporation (1400 16th Street, San Francisco, CA 94103, #05D2040778).
- This report only includes variants that have a clinically significant association with the conditions tested as of the report date. Variants of uncertain significance, benign variants, and likely benign variants are not included in this report. However, if additional evidence becomes available to indicate that the clinical significance of a variant has changed, Invitae may update this report and provide notification.
- A PMID is a unique identifier referring to a published, scientific paper. Search by PMID at http://www.ncbi.nlm.nih.gov/pubmed.
- An rsID is a unique identifier referring to a single genomic position, and is used to associate population frequency information with sequence changes at that position. Reported population frequencies are derived from a number of public sites that aggregate data from large-scale population sequencing projects, including ExAC (http://exac.broadinstitute.org), gnomAD (http://gnomad.broadinstitute.org), and dbSNP (http://ncbi.nlm.nih.gov/SNP).

Disclaimer

DNA studies do not constitute a definitive test for the selected condition(s) in all individuals. It should be realized that there are possible sources of error. Errors can result from trace contamination, rare technical errors, rare genetic variants that interfere with analysis, recent scientific developments, and alternative classification systems. This test should be one of many aspects used by the healthcare provider to help with a diagnosis and treatment plan, but it is not a diagnosis itself. This test was developed and its performance characteristics determined by Invitae. It has not been cleared or approved by the FDA. The laboratory is regulated under the Clinical Laboratory Improvement Act (CLIA) as qualified to perform high-complexity clinical tests (CLIA ID: 05D2040778). This test is used for clinical purposes. It should not be regarded as investigational or for research.

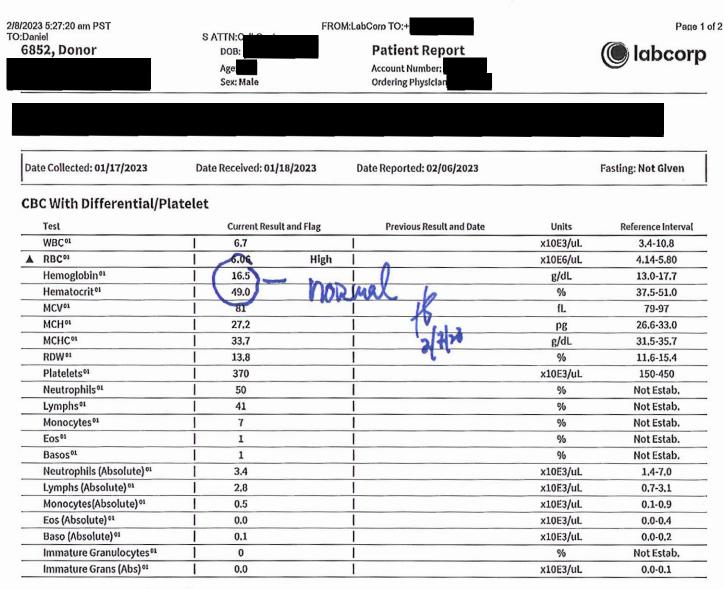
DOB:

Patient name: Donor 6852

Invitae #:

Limitations

- Based on validation study results, this assay achieves >99% analytical sensitivity and specificity for single nucleotide variants, insertions and deletions <15bp in length, and exon-level deletions and duplications. Invitae's methods also detect insertions and deletions larger than 15bp but smaller than a full exon but sensitivity for these may be marginally reduced. Invitae's deletion/duplication analysis determines copy number at a single exon resolution at virtually all targeted exons. However, in rare situations, single-exon copy number events may not be analyzed due to inherent sequence properties or isolated reduction in data quality. Certain types of variants, such as structural rearrangements (e.g. inversions, gene conversion events, translocations, etc.) or variants embedded in sequence with complex architecture (e.g. short tandem repeats or segmental duplications), may not be detected. Additionally, it may not be possible to fully resolve certain details about variants, such as mosaicism, phasing, or mapping ambiguity. Unless explicitly guaranteed, sequence changes in the promoter, non-coding exons, and other non-coding regions are not covered by this assay. Please consult the test definition on our website for details regarding regions or types of variants that are covered or excluded for this test. This report reflects the analysis of an extracted genomic DNA sample. While this test is intended to reflect the analysis of extracted genomic DNA from a referred patient, in very rare cases the analyzed DNA may not represent that individual's constitutional genome, such as in the case of a circulating hematolymphoid neoplasm, bone marrow transplant, blood transfusion, chimerism, culture artifact or maternal cell contamination.</p>
- FMR1: Sizing accuracy is expected to be +/-1 for CGG repeat alleles less than or equal to 90 repeat units and +/-3 for CGG repeat alleles greater than 90 repeat units. If the two CGG repeats listed are the same, this may indicate that both alleles are the same size or that one allele is too small to be detected by this analysis. The number of AGG interruptions is only determined for females with triplet repeat sizes of 55-90. AR: CAG repeat numbers are not determined. TBCE: Sequencing analysis for exons 2 includes only cds +/- 10 bp. CFTR: Sequencing analysis for exons 7 includes only cds +/- 10 bp. AMN: Deletion/duplication analysis is not offered for exon 1. MLC1: Sequencing analysis for exons 11 includes only cds +/- 10 bp. BBS9: Deletion/duplication analysis is not offered for exon 4. CYP21A2: Analysis includes the most common variants (c.92C>T(p.Pro31Leu), c.293-13C>G (intronic), c.332_339delGAGACTAC (p.Gly111Valfs*21), c.518T>A (p.Ile173Asn), c.710T>A (p.Ile237Asn), c.713T>A (p.Val238Glu), c.719T>A (p.Met240Lys), c.844G>T (p.Val282Leu), c.923dupT (p.Leu308Phefs*6), c.955C>T (p.Gln319*), c.1069C>T(p.Arg357Trp), c.1360C>T (p.Pro454Ser) and the 30Kb deletion) as well as select rare HGMD variants only (list available upon request). Full gene duplications are reported only in the presence of a pathogenic variant(s). When a duplication and a pathogenic variant(s) is identified, phase (cis/trans) cannot be determined. Full gene deletion analysis is not offered. Sensitivity to detect these variants, if they result from complex gene conversion/fusion events, may be reduced. PTPRC: Sequencing analysis is not offered for exons 3, 15. COL11A2: Deletion/duplication analysis is not offered for exon 36. SMN1: Systematic exon numbering is used for all genes, including SMN1, and for this reason the exon typically referred to as exon 7 in the literature (PMID: 8838816) is referred to as exon 8 in this report. This assay unambiguously detects SMN1 exon 8 copy number. The presence of the g.27134T>G variant (also known as c.*3+80T>G) is reported if SMN1 copy number = 2. SMN1 or SMN2: NM_000344.3:c.*3+80T>G variant only. USH1C: Deletion/duplication analysis is not offered for exons 5-6. VPS53: Sequencing analysis for exons 14 includes only cds +/- 5 bp. DUOX2: Deletion/duplication and sequencing analysis is not offered for exons 6-7. FANCD2: Deletion/duplication analysis is not offered for exons 14-17, 22 and sequencing analysis is not offered for exons 15-17. Sequencing analysis for exons 6, 14, 18, 20, 23, 25, 34 includes only cds +/-10 bp. ARX: Analysis is validated to detect polyalanine expansions but sensitivity may be reduced. EYS: Sequencing analysis for exons 30 includes only cds +/- 0 bp. GNE: Sequencing analysis for exons 8 includes only cds +/- 10 bp. LIFR: Sequencing analysis for exons 3 includes only cds +/- 5 bp. OAT: Deletion/duplication analysis is not offered for exon 2. PEX1: Sequencing analysis for exons 16 includes only cds +/- 0 bp. PKHD1: Deletion/duplication analysis is not offered for exon 13. TSFM: Sequencing analysis is not offered for exon 5. GALE: Sequencing analysis for exons 10 includes only cds +/- 5 bp. TYR: Deletion/duplication and sequencing analysis is not offered for exon 5. ANO10: Sequencing analysis for exons 8 includes only cds +/- 0 bp. FANCL: Sequencing analysis for exons 4, 10 includes only cds +/- 10 bp. GHR: Deletion/duplication and sequencing analysis is not offered for exon 3. FAH: Deletion/duplication analysis is not offered for exon 14. FH: Sequencing analysis for exons 9 includes only cds +/- 10 bp. WRN: Deletion/duplication analysis is not offered for exons 10-11. Sequencing analysis for exons 8, 10-11 includes only cds +/- 10 bp. VPS13A: Deletion/duplication analysis is not offered for exons 2-3, 27-28. IDS: Detection of complex rearrangements not offered (PMID: 7633410, 20301451). NEB: Deletion/duplication analysis is not offered for exons 82-105. NEB variants in this region with no evidence towards pathogenicity are not included in this report, but are available upon request. ATM: Sequencing analysis for exons 6, 24, 43 includes only cds +/- 10 bp. ABCC2: Deletion/duplication analysis is not offered for exons 24-25. OTOA: Deletion/duplication and sequencing analysis is not offered for exons 20-28. TG: Deletion/duplication analysis is not offered for exon 18. Sequencing analysis for exons 44 includes only cds +/- 0 bp. ATP8B1: Sequencing analysis for exons 19 includes only cds +/- 10 bp. AIPL1: Sequencing analysis for exons 2 includes only cds +/- 10 bp. MID1: Sequencing analysis for exons 3 includes only cds +/- 0 bp. DDX11: NM_030653.3:c.1763-1G>C variant only. GALC: Deletion/duplication analysis is not offered for exon 6. GBA: c.84dupG (p.Leu29Alafs*18), c.115+1G>A (Splice donor), c.222_224delTAC (p.Thr75del), c.475C>T (p.Arg159Trp), c.595_596delCT (p.Leu199Aspfs*62), c.680A>G (p.Asn227Ser), c.721G>A (p.Gly241Arg), c.754T>A (p.Phe252Ile), c.1226A>G (p.Asn409Ser), c.1246G>A (p.Gly416Ser), c.1263_1317del (p.Leu422Profs*4), c.1297G>T (p.Val433Leu), c.1342G>C (p.Asp448His), c.1343A>T (p.Asp448Val), c.1448T>C (p.Leu483Pro), c.1504C>T (p.Arg502Cys), c.1505G>A (p.Arg502His), c.1603C>T (p.Arg535Cys), c.1604G>A (p.Arg535His) variants


Invitae #:

only. Rarely, sensitivity to detect these variants may be reduced. When sensitivity is reduced, zygosity may be reported as "unknown". HBA1/2: This assay is designed to detect deletions and duplications of HBA1 and/or HBA2, resulting from the -alpha20.5, --MED, --SEA, --FIL/--THAI, -alpha3.7, -alpha4.2, anti3.7 and anti4.2. Sensitivity to detect other copy number variants may be reduced. Detection of overlapping deletion and duplication events will be limited to combinations of events with significantly differing boundaries. In addition, deletion of the enhancer element HS-40 and the sequence variant, Constant Spring (NM_000517.4:c.427T>C), can be identified by this assay. MTHFR: The NM_005957.4:c.665C>T (p.Ala222Val) (aka 677C>T) and c.1286A>C (p.Glu429Ala) (aka 1298A>C) variants are not reported in our primary report.

This report has been reviewed and approved by:

Matexand

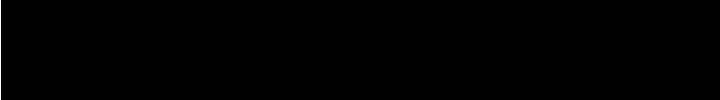
Matteo Vatta, Ph.D., FACMG Clinical Molecular Geneticist

Chromosome, Blood, Routine

Test	Current Result and Flag	Previous Result and Date	Units	Reference Interval
Specimen Type®	Comment:BLOOD			
Cells Counted ⁰²	20			
Cells Analyzed ⁰²	20			
Cells Karyotyped ⁰²	2			
GTG Band Resolution Achieved ⁹²	500	/		
Cytogenetic Result ⁰²	Comment:			
Interpretation ⁰²	revealed a MALE karyotype wi banding pattern in all cells	observed. xclude the possibility of sub	tle	

labcorp

Date Created and Stored 02/06/23 1508 ET Final Report Page 1 of 2


©2023 Laboratory Corporation of America® Holdings All Rights Reserved • Enterprise Report Version 2.00 This document contains private and confidential health information protected by state and federal law. If you have received this document in error please call 800-631-5250

2/8/2023 5:27:20 am PST TO:Daniel	S ATTN:Call Center	FROM:LabCom TO:	Page 2 of 2
6852, Donor	DOB	Patient Report	🔘 labcorp
Patient ID:	Age:	Account Number; 3	
Specimen ID:	Sex: Male	Ordering Physician	

Chromosome, Blood, Routine (Cont.)

 congenital anomalies due to other etiologies. Technical Component-Processing performed by LabCorp CLIA
34D1008914, 1904 TW Alexander Dr, Research Triangle Park, NC
27709. Medical Director, Anjen Chenn, M.D., Ph.D. Technical Component-Chromosome analysis performed by
LabCorp, CLIA 45D0674994. 7207 North Gessner Rd., Houston, TX 77040. Laboratory Director, Venkateswara R Potluri PhD.

Director Review:02	Chan	Comment: gqing Xia, PhD		
PDF	1			


Disclaimer

The Previous Result is listed for the most recent test performed by Labcorp in the past 5 years where there is sufficient patient demographic data to match the result to the patient, Results from certain tests are excluded from the Previous Result display.

Icon Legend

Performing Labs

01: RN - Labcorp Raritan 69 First Avenue, Raritan, NJ, 08869-1800 Dir: Liza Jodry, MD 02: YU - Labcorp RTP 1904 TW Alexander Drive Ste C, RTP, NC, 27709-0153 Dir: Anjen Chenn, MDPhD For Inquiries, the physician may contact Branch: 800-631-5250 Lab: 800-631-5250

labcorp

Date Created and Stored 02/06/23 1508 ET Final Report Page 2 of 2

©2023 Laboratory Corporation of America® Holdings All Rights Reserved • Enterprise Report Version 2.00 This document contains private and conlidential health information protected by state and federal law. If you have received this document in error please call 800-631-5250