Donor 6280 ## **Genetic Testing Summary** Fairfax Cryobank recommends reviewing this genetic testing summary with your healthcare provider to determine suitability. Last Updated: 04/07/21 Donor Reported Ancestry: Japanese, Polish, English Jewish Ancestry: No | Genetic Test* | Result | Comments/Donor's Residual Risk** | |---------------|--------|----------------------------------| |---------------|--------|----------------------------------| | Chromosome analysis (karyotype) | Normal male karyotype | No evidence of clinically significant chromosome abnormalities | |--|---|---| | Hemoglobin evaluation | Normal hemoglobin fractionation and MCV/MCH results | Reduced risk to be a carrier for sickle cell anemia, beta thalassemia, alpha thalassemia trait (aa/ and a-/a-) and other hemoglobinopathies | | Cystic Fibrosis (CF) carrier screening | Negative by gene sequencing in the CFTR gene | 1/440 | | Spinal Muscular Atrophy (SMA) carrier screening | Negative for deletions of exon 7 in the SMN1 gene | 1/894 | | Expanded Genetic Disease Carrier
Screening Panel attached- 283 diseases
by gene sequencing | Carrier: Zellweger Syndrome Spectrum (PEX1-Related) Negative for other genes sequenced | Partner testing recommended before using this donor. | ^{*}No single test can screen for all genetic disorders. A negative screening result significantly reduces, but cannot eliminate, the risk for these conditions in a pregnancy. ^{**}Donor residual risk is the chance the donor is still a carrier after testing negative. #### Patient Information Name: Donor 6280 Client ID: Date of Birth: Sema4 ID: Indication: Carrier Testing #### Specimen Information Specimen Type: Blood Date Collected: 10/02/2020 Date Received: 10/03/2020 Final Report: 10/17/2020 ## Referring Provider Fairfax Cryobank, Inc. # Expanded Carrier Screen (283) Number of genes tested: 283 ## SUMMARY OF RESULTS AND RECOMMENDATIONS | ① Positive | ○ Negative | |---|--| | Carrier of Zellweger Syndrome Spectrum (<i>PEX1</i> -Related) (AR) Associated gene(s): <i>PEX1</i> Variant(s) Detected: c.1239*1G>T, Pathogenic, Heterozygous (one copy) | Negative for all other genes tested To view a full list of genes and diseases tested please see Table 1 in this report | AR=Autosomal recessive: XL=X-linked #### Recommendations - Testing the partner for the above positive disorder(s) and genetic counseling are recommended. - Please note that for female carriers of X-linked diseases, follow-up testing of a male partner is not indicated. - CGG repeat analysis of *FMR1* for fragile X syndrome is not performed on males as repeat expansion of premutation alleles is not expected in the male germline. - Individuals of Asian, African, Hispanic and Mediterranean ancestry should also be screened for hemoglobinopathies by CBC and hemoglobin electrophoresis. - Consideration of residual risk by ethnicity after a negative carrier screen is recommended for the other diseases on the panel, especially in the case of a positive family history for a specific disorder. ## Interpretation of positive results ## Zellweger Syndrome Spectrum (PEX1-Related) (AR) #### Results and Interpretation A heterozygous (one copy) pathogenic splice site variant, c.1239+1G>T, was detected in the *PEX1* gene (NM_000466.2). When this variant is present in trans with a pathogenic variant, it is considered to be causative for Zellweger syndrome spectrum (*PEX1*-related). Therefore, this individual is expected to be at least a carrier for Zellweger syndrome spectrum (*PEX1*-related). Heterozygous carriers are not expected to exhibit symptoms of this disease. ### What is Zellweger Syndrome Spectrum (PEX1-Related)? Zellweger syndrome spectrum (*PEX1*-related) is an autosomal recessive, pan-ethnic disease of peroxisome biogenesis. It is comprised of three diseases that make up a continuum of severity, from the most severe, known as Zellweger syndrome, to neonatal adrenoleukodystrophy, to infantile Refsum disease, which is the mildest. - Zellweger syndrome is characterized by demyelination of structures in the brain leading to leukodystrophy, resulting in seizures and vision loss. Clinical features also include dysmorphic features, hypotonia, cardiac problems, and dysfunction of the liver and kidneys. Death typically occurs in the first year of life. - Neonatal adrenoleukodystrophy and infantile Refsum disease share many overlapping features. Onset of symptoms may be in infancy, or may be noticed later in childhood. Features include developmental delay and loss of vision and hearing; some children present with bleeding in the brain. The severity and course of the disease can vary between individuals; some may learn to walk and talk, and rarely, patients may survive until adulthood; others never walk or talk. Many patients do not survive childhood. Symptoms tend to progress in severity over the course of the patient's life. Specific *PEX1* variants have been reported to be associated with a more severe or milder phenotype; additionally, frameshift variants have been to be associated with more severe disease presentations. # Test description This patient was tested for a panel of diseases using a combination of sequencing, targeted genotyping and copy number analysis. Please note that negative results reduce but do not eliminate the possibility that this individual is a carrier for one or more of the disorders tested. Please see Table 1 for a list of genes and diseases tested, and **go.sema4.com/residualrisk** for specific detection rates and residual risk by ethnicity. With individuals of mixed ethnicity, it is recommended to use the highest residual risk estimate. Only variants determined to be pathogenic or likely pathogenic are reported in this carrier screening test. Salas & Ein Yaping Ryan Qian, Ph.D., FACMG, Laboratory Director Laboratory Medical Consultant: George A. Diaz, M.D., Ph.D. ## Genes and diseases tested For specific detection rates and residual risk by ethnicity, please visit go.sema4.com/residualrisk ## Table 1: List of genes and diseases tested with detailed results | | Disease | Gene | Inheritance
Pattern | Status | Detailed Summary | |------------|--|------------------|------------------------|---------------------------|--| | (+) | Positive | | | | | | | Zellweger Syndrome Spectrum (PEX1-Related) | PEX1 | AR | Carrier | c.1239+1G>T, Pathogenic, Heterozygous (one copy) | | Θ | Negative | | | | | | | 3-Beta-Hydroxysteroid Dehydrogenase Type II
Deficiency | HSD3B2 | AR | Reduced Risk | | | | 3-Methylcrotonyl-CoA Carboxylase Deficiency (<i>MCCC1</i> -Related) | MCCC1 | AR | Reduced Risk | | | | 3-Methylcrotonyl-CoA Carboxylase Deficiency
(MCCC2-Related) | MCCC2 | AR | Reduced Risk | | | | 3-Methylglutaconic Aciduria, Type III | OPA3 | AR | Reduced Risk | | | | 3-Phosphoglycerate Dehydrogenase Deficiency | PHGDH | AR | Reduced Risk | | | | 6-Pyruvoyl-Tetrahydropterin Synthase Deficiency | PTS | AR | Reduced Risk | | | | Abetalipoproteinemia | MTTP | AR | Reduced Risk | | | | Achromatopsia (CNGB3-related) | CNGB3 | AR | Reduced Risk | | | | Acrodermatitis Enteropathica | SLC39A4 | AR | Reduced Risk | | | | Acute Infantile Liver Failure | TRMU | AR | Reduced Risk | | | | Acyl-CoA Oxidase I Deficiency | ACOX1 | AR | Reduced Risk | | | | Adenosine Deaminase Deficiency | ADA | AR | Reduced Risk | | | | Adrenoleukodystrophy, X-Linked | ABCD1 | XL | Reduced Risk | | | | Aicardi-Goutieres Syndrome (SAMHD1-Related) | SAMHD1 | AR | Reduced Risk | | | | Alpha-Mannosidosis | MAN2B1 | AR | Reduced Risk | | | | Alpha-Thalassemia | HBA1/HBA2 | AR | Reduced Risk | <i>HBA1</i> Copy Number: 2 <i>HBA2</i> Copy Number: 2 No pathogenic copy number variants detected | | | Alaba Thalasasain Mantal Dataudation Conduces | ATOV | N/I | Dadward Did | HBA1/HBA2 Sequencing: Negative | | | Alpha-Thalassemia Mental Retardation Syndrome | ATRX | XL
AR | Reduced Risk Reduced Risk | | | | Alport Syndrome (COL4A3-Related) Alport Syndrome (COL4A4-Related) | COL4A3
COL4A4 | AR | Reduced Risk | | | | Alport Syndrome (COLAA5-Related) | COL4A5 | XL | Reduced Risk | | | | Alstrom Syndrome | ALMS1 | AR | Reduced Risk | | | | Andermann Syndrome | SLC12A6 | AR | Reduced Risk | | | | Argininosuccinic Aciduria | ASL | AR | Reduced Risk | | | | Aromatase Deficiency | CYP19A1 | AR | Reduced Risk | | | | Arthrogryposis, Mental Retardation, and Seizures | SLC35A3 | AR | Reduced Risk | | | | Asparagine Synthetase Deficiency | ASNS | AR | Reduced Risk | | | | Aspartylglycosaminuria | AGA | AR | Reduced Risk | | | | Ataxia With Isolated Vitamin E Deficiency | TTPA | AR | Reduced Risk | | | | Ataxia-Telangiectasia | ATM | AR | Reduced Risk | | | | Autosomal Recessive Spastic Ataxia of Charlevoix-
Saguenay | SACS | AR | Reduced Risk | | | | Bardet-Biedl Syndrome (BBS10-Related) | BBS10 | AR | Reduced Risk | | | | Bardet-Biedl Syndrome (BBS12-Related) | BBS12 | AR | Reduced Risk | | | | Bardet-Biedl Syndrome (BBS1-Related) | BBS12 | AR | Reduced Risk | | | | Bardet-Biedl Syndrome (BBS2-Related) | BBS2 | AR | Reduced Risk | | | | Bare Lymphocyte Syndrome, Type II | CIITA | AR | Reduced Risk | | | | Bartter Syndrome, Type 4A | BSND | AR | Reduced Risk | | | | Bernard-Soulier Syndrome, Type A1 | GP1BA | AR | Reduced Risk | | | | Bernard-Soulier Syndrome, Type C | GP9 | AR | Reduced Risk | | | Date Olable Deleted Henry wish have all the | | 4.0 | D 1 10'1 | | |---|----------|----------|------------------------------|---| | Beta-Globin-Related Hemoglobinopathies | HBB | AR | Reduced Risk | | | Beta-Ketothiolase Deficiency | ACAT1 | AR | Reduced Risk | | | Bilateral Frontoparietal Polymicrogyria | GPR56 | AR | Reduced Risk | | | Biotinidase Deficiency | BTD | AR | Reduced Risk | | | Bloom Syndrome | BLM | AR | Reduced Risk | | | Canavan Disease | ASPA | AR | Reduced Risk | | | Carbamoylphosphate Synthetase I Deficiency | CPS1 | AR | Reduced Risk | | | Carnitine Palmitoyltransferase IA Deficiency | CPT1A | AR | Reduced Risk | | | Carnitine Palmitoyltransferase II Deficiency | CPT2 | AR | Reduced Risk | | | Carpenter Syndrome | RAB23 | AR | Reduced Risk | | | Cartilage-Hair Hypoplasia | RMRP | AR | Reduced Risk | | | Cerebral Creatine Deficiency Syndrome 1 | SLC6A8 | XL | Reduced Risk | | | Cerebral Creatine Deficiency Syndrome 2 | GAMT | AR | Reduced Risk | | | Cerebrotendinous Xanthomatosis | CYP27A1 | AR | Reduced Risk | | | Charcot-Marie-Tooth Disease, Type 4D | NDRG1 | AR | Reduced Risk | | | Charcot-Marie-Tooth Disease, Type 5 / Arts Syndrome | PRPS1 | XL | Reduced Risk | | | Charcot-Marie-Tooth Disease, X-Linked | GJB1 | XL | Reduced Risk | | | Choreoacanthocytosis | VPS13A | AR | Reduced Risk | | | Choroideremia | СНМ | XL | Reduced Risk | | | Chronic Granulomatous Disease (CYBA-Related) | CYBA | AR | Reduced Risk | | | Chronic Granulomatous Disease (CYBB-Related) | CYBB | XL | Reduced Risk | | | Citrin Deficiency | SLC25A13 | AR | Reduced Risk | | | Citrullinemia, Type 1 | ASS1 | AR | Reduced Risk | | | Cohen Syndrome | VPS13B | AR | Reduced Risk | | | Combined Malonic and Methylmalonic Aciduria | ACSF3 | AR | Reduced Risk | | | Combined Oxidative Phosphorylation Deficiency 1 | GFM1 | AR | Reduced Risk | | | Combined Oxidative Phosphorylation Deficiency 3 | TSFM | AR | Reduced Risk | | | Combined Pituitary Hormone Deficiency 2 | PROP1 | AR | Reduced Risk | | | Combined Pituitary Hormone Deficiency 3 | LHX3 | AR | Reduced Risk | | | Combined SAP Deficiency | PSAP | AR | Reduced Risk | | | Congenital Adrenal Hyperplasia due to 17-Alpha-
Hydroxylase Deficiency | CYP17A1 | AR | Reduced Risk | | | Congenital Adrenal Hyperplasia due to 21-Hydroxylase
Deficiency | CYP21A2 | AR | Reduced Risk | CYP21A2 copy number: 2 CYP21A2 sequencing: Negative | | Congenital Amegakaryocytic Thrombocytopenia | MPL | AR | Reduced Risk | | | Congenital Disorder of Glycosylation, Type Ia | PMM2 | AR | Reduced Risk | | | Congenital Disorder of Glycosylation, Type Ib | MPI | AR | Reduced Risk | | | Congenital Disorder of Glycosylation, Type Ic | ALG6 | AR | Reduced Risk | | | Congenital Insensitivity to Pain with Anhidrosis | NTRK1 | AR | Reduced Risk | | | Congenital Myasthenic Syndrome (CHRNE-Related) | CHRNE | AR | Reduced Risk | | | Congenital Myasthenic Syndrome (RAPSN-Related) | RAPSN | AR | Reduced Risk | | | Congenital Neutropenia (HAX1-Related) | HAX1 | AR | Reduced Risk | | | Congenital Neutropenia (VPS45-Related) | VPS45 | AR | Reduced Risk | | | Corneal Dystrophy and Perceptive Deafness | SLC4A11 | AR | Reduced Risk | | | Corticosterone Methyloxidase Deficiency | | | Reduced Risk | | | <u> </u> | CYP11B2 | AR | | | | Cystic Fibrosis | CFTR | AR | Reduced Risk | | | Cystinosis D. Diff motional Protein Perference | CTNS | AR | Reduced Risk | | | D-Bifunctional Protein Deficiency | HSD17B4 | AR | Reduced Risk | | | Deafness, Autosomal Recessive 77 | LOXHD1 | AR | Reduced Risk | | | Duchenne Muscular Dystrophy / Becker Muscular
Dystrophy | DMD | XL | Reduced Risk | | | Dyskeratosis Congenita (RTEL1-Related) | RTEL1 | AR | Reduced Risk | | | Dystrophic Epidermolysis Bullosa | COL7A1 | AR | Reduced Risk | | | Ehlers-Danlos Syndrome, Type VIIC | ADAMTS2 | AR | Reduced Risk | | | Ellis-van Creveld Syndrome (EVC-Related) | EVC | AR | Reduced Risk | | | | EMD | XL | Reduced Risk | | | Emery-Dreifuss Myopathy 1 | LIVID | | | | | • | NR2E3 | AR | Reduced Risk | | | Emery-Dreifuss Myopathy 1 | | AR
AR | Reduced Risk
Reduced Risk | | | Emery-Dreifuss Myopathy 1
Enhanced S-Cone Syndrome | NR2E3 | | | | | Factor XI Deficiency | F11 | AR | Reduced Risk | | |--|----------|----|--------------|--| | Familial Autosomal Recessive Hypercholesterolemia | LDLRAP1 | AR | Reduced Risk | | | Familial Dysautonomia | IKBKAP | AR | Reduced Risk | | | Familial Hypercholesterolemia | LDLR | AR | Reduced Risk | | | Familial Hyperinsulinism (ABCC8-Related) | ABCC8 | AR | Reduced Risk | | | Familial Hyperinsulinism (KCNJ11-Related) | KCNJ11 | AR | Reduced Risk | | | Familial Mediterranean Fever | MEFV | AR | Reduced Risk | | | Fanconi Anemia, Group A | FANCA | AR | Reduced Risk | | | Fanconi Anemia, Group C | FANCC | AR | Reduced Risk | | | Fanconi Anemia, Group G | FANCG | AR | Reduced Risk | | | Fragile X Syndrome | FMR1 | XL | Reduced Risk | FMR1 CGG repeat sizes: Not Performed FMR1 Sequencing: Negative Fragile X CGG triplet repeat expansion testing w not performed at this time, as the patient has eith been previously tested or is a male. | | Furnarase Deficiency | FH | AR | Reduced Risk | | | GRACILE Syndrome and Other BCS1L-Related Disorders | BCS1L | AR | Reduced Risk | | | Galactokinase Deficiency | GALK1 | AR | Reduced Risk | | | Galactosemia | GALT | AR | Reduced Risk | | | Gaucher Disease | GBA | AR | Reduced Risk | | | Gitelman Syndrome | SLC12A3 | AR | Reduced Risk | | | Glutaric Acidemia, Type I | GCDH | AR | Reduced Risk | | | Gutaric Acidemia, Type IIa | ETFA | AR | Reduced Risk | | | Gutaric Acidemia, Type IIc | ETFDH | AR | Reduced Risk | | | Glycine Encephalopathy (AMT-Related) | AMT | AR | Reduced Risk | | | Glycine Encephalopathy (GLDC-Related) | GLDC | AR | Reduced Risk | | | Glycogen Storage Disease, Type II | GAA | AR | Reduced Risk | | | | AGL | AR | Reduced Risk | | | Glycogen Storage Disease, Type III | AGL | AR | Reduced RISK | | | Glycogen Storage Disease, Type IV / Adult
Polyglucosan Body Disease | GBE1 | AR | Reduced Risk | | | Glycogen Storage Disease, Type la | G6PC | AR | Reduced Risk | | | Glycogen Storage Disease, Type Ib | SLC37A4 | AR | Reduced Risk | | | Glycogen Storage Disease, Type V | PYGM | AR | Reduced Risk | | | Glycogen Storage Disease, Type VII | PFKM | AR | Reduced Risk | | | HMG-CoA Lyase Deficiency | HMGCL | AR | Reduced Risk | | | Hemochromatosis, Type 2A | HFE2 | AR | Reduced Risk | | | Hemochromatosis, Type 3 | TFR2 | AR | Reduced Risk | | | Hereditary Fructose Intolerance | ALDOB | AR | Reduced Risk | | | Hereditary Spastic Paraparesis 49 | TECPR2 | AR | Reduced Risk | | | Hermansky-Pudlak Syndrome, Type 1 | HPS1 | AR | Reduced Risk | | | Hermansky-Pudlak Syndrome, Type 3 | HPS3 | AR | Reduced Risk | | | Holocarboxylase Synthetase Deficiency | HLCS | AR | Reduced Risk | | | Homocystinuria (CBS-Related) | CBS | AR | Reduced Risk | | | Homocystinuria due to MTHFR Deficiency | MTHFR | AR | Reduced Risk | | | Homocystinuria, cblEType | MTRR | AR | Reduced Risk | | | Hydrolethalus Syndrome | HYLS1 | AR | Reduced Risk | | | Hyperomithinemia-Hyperammonemia-
Homocitrullinuria Syndrome | SLC25A15 | AR | Reduced Risk | | | Hypohidrotic Ectodermal Dysplasia 1 | EDA | XL | Reduced Risk | | | Hypophosphatasia | ALPL | AR | Reduced Risk | | | Inclusion Body Myopathy 2 | GNE | AR | Reduced Risk | | | Infantile Cerebral and Cerebellar Atrophy | MED17 | AR | Reduced Risk | | | Isovaleric Acidemia | IVD | AR | Reduced Risk | | | Joubert Syndrome 2 | TMEM216 | AR | Reduced Risk | | | Joubert Syndrome 7 / Meckel Syndrome 5 / COACH Syndrome | RPGRIP1L | AR | Reduced Risk | | | Junctional Epidermolysis Bullosa (<i>LAMA</i> 3-Related) | LAMA3 | AR | Reduced Risk | | | Junctional Epidermolysis Bullosa (LAMB3-Related) | LAMB3 | AR | Reduced Risk | | | Junctional Epidermolysis Bullosa (LAMC2-Related) | LAMC2 | AR | Reduced Risk | | | | | | | | | Lamellar Ichthyosis, Type 1 | TGM1 | AR | Reduced Risk | |---|---------------|----------|---------------------| | Leber Congenital Amaurosis 10 and Other CEP290- | Tam | AIN | Neduced Nisk | | Related Ciliopathies | CEP290 | AR | Reduced Risk | | Leber Congenital Amaurosis 13 | RDH12 | AR | Reduced Risk | | Leber Congenital Amaurosis 2 / Retinitis Pigmentosa 20 | RPE65 | AR | Reduced Risk | | Leber Congenital Amaurosis 5 | LCA5 | AR | Reduced Risk | | Leber Congenital Amaurosis 8 / Retinitis Pigmentosa 12 | | | | | / Pigmented Paravenous Chorioretinal Atrophy | CRB1 | AR | Reduced Risk | | Leigh Syndrome, French-Canadian Type | LRPPRC | AR | Reduced Risk | | Lethal Congenital Contracture Syndrome 1 / Lethal | | | | | Arthrogryposis with Anterior Horn Cell Disease | GLE1 | AR | Reduced Risk | | Leukoencephalopathy with Vanishing White Matter | EIF2B5 | AR | Reduced Risk | | Limb-Girdle Muscular Dystrophy, Type 2A | CAPN3 | AR | Reduced Risk | | Limb-Girdle Muscular Dystrophy, Type 2B | DYSF | AR | Reduced Risk | | Limb-Girdle Muscular Dystrophy, Type 2C | SGCG | AR | Reduced Risk | | Limb-Girdle Muscular Dystrophy, Type 2D | SGCA | AR | Reduced Risk | | Limb-Girdle Muscular Dystrophy, Type 2E | SGCB | AR | Reduced Risk | | | FKRP | AR | Reduced Risk | | Limb-Girdle Muscular Dystrophy, Type 2I | | | | | Lipoamide Dehydrogenase Deficiency | DLD | AR | Reduced Risk | | Lipoid Adrenal Hyperplasia | STAR | AR | Reduced Risk | | Lipoprotein Lipase Deficiency | LPL | AR | Reduced Risk | | Long-Chain 3-Hydroxyacyl-CoA Dehydrogenase
Deficiency | HADHA | AR | Reduced Risk | | Lysinuric Protein Intolerance | SLC7A7 | AR | Reduced Risk | | Maple Syrup Urine Disease, Type 1a | BCKDHA | AR | Reduced Risk | | Maple Syrup Urine Disease, Type 1b | <i>BCKDHB</i> | AR | Reduced Risk | | Meckel 1 / Bardet-Biedl Syndrome 13 | MKS1 | AR | Reduced Risk | | Medium Chain Acyl-CoA Dehydrogenase Deficiency | ACADM | AR | Reduced Risk | | Megalencephalic Leukoencephalopathy with
Subcortical Cysts | MLC1 | AR | Reduced Risk | | Menkes Disease | ATP7A | XL | Reduced Risk | | | ARSA | AR | Reduced Risk | | Metachromatic Leukodystrophy | | | | | Methylmalonic Acidemia (MMAA-Related) | MMAA | AR | Reduced Risk | | Methylmalonic Acidemia (MMAB-Related) | MMAB | AR | Reduced Risk | | Methylmalonic Acidemia (MUT-Related) | MUT | AR | Reduced Risk | | Methylmalonic Aciduria and Homocystinuria,
Cobalamin C Type | MMACHC | AR | Reduced Risk | | Methylmalonic Aciduria and Homocystinuria,
Cobalamin D Type | MMADHC | AR | Reduced Risk | | Microphthalmia / Anophthalmia | VSX2 | AR | Reduced Risk | | Mitochondrial Complex I Deficiency (ACADg-Related) | ACAD9 | AR | Reduced Risk | | Mitochondrial Complex I Deficiency (NDUFAF5-Related) | NDUFAF5 | AR | Reduced Risk | | Mitochondrial Complex I Deficiency (NDUFS6-Related) | NDUFS6 | AR | Reduced Risk | | Mitochondrial DNA Depletion Syndrome 6 / Navajo | | | | | Neurohepatopathy | MPV17 | AR | Reduced Risk | | Mitochondrial Myopathy and Sideroblastic Anemia 1 | PUS1 | AR | Reduced Risk | | Mucolipidosis II / IIIA | GNPTAB | AR | Reduced Risk | | Mucolipidosis III Gamma | GNPTG | AR | Reduced Risk | | Mucolipidosis IV | MCOLN1 | AR | Reduced Risk | | Mucopolysaccharidosis Type I | IDUA | AR | Reduced Risk | | Mucopolysaccharidosis Type II | IDS | XL | Reduced Risk | | Mucopolysaccharidosis Type IIIA | SGSH | AR | Reduced Risk | | Mucopolysaccharidosis Type IIIB | NAGLU | AR | Reduced Risk | | | HGSNAT | AR | Reduced Risk | | | TIGSIVAL | AR | | | Mucopolysaccharidosis Type IIIC | CNIC | | Reduced Risk | | Mucopolysaccharidosis Type IIID | GNS | | Dealers of District | | Mucopolysaccharidosis Type IIID
Mucopolysaccharidosis Type IVb / GM1 Gangliosidosis | GLB1 | AR | Reduced Risk | | Mucopolysaccharidosis Type IIID Mucopolysaccharidosis Type IVb / GM1 Gangliosidosis Mucopolysaccharidosis type IX | GLB1
HYAL1 | AR
AR | Reduced Risk | | Mucopolysaccharidosis Type IIID
Mucopolysaccharidosis Type IVb / GM1 Gangliosidosis | GLB1 | AR | | | Muscle-Eye-Brain Disease and Other <i>POMGNT1</i> - | | | | | |----------------------------------------------------------------------|----------|----|----------------------------|---| | Related Congenital Muscular Dystrophy- | POMGNT1 | AR | Reduced Risk | | | Dystroglycanopathies | | | | | | Myoneurogastrointestinal Encephalopathy | TYMP | AR | Reduced Risk | | | Myotubular Myopathy 1 | MTM1 | XL | Reduced Risk | | | N-Acetylglutamate Synthase Deficiency | NAGS | AR | Reduced Risk | | | Nemaline Myopathy 2 | NEB | AR | Reduced Risk | | | Nephrogenic Diabetes Insipidus, Type II | AQP2 | AR | Reduced Risk | | | Nephrotic Syndrome (NPHS1-Related) / Congenital | NIDLICA | AR | Reduced Risk | | | Finnish Nephrosis | NPHS1 | AK | Reduced Risk | | | Nephrotic Syndrome (<i>NPHS2</i> -Related) / Steroid- | NPHS2 | AR | Reduced Risk | | | Resistant Nephrotic Syndrome | INPH32 | AK | Reduced Risk | | | Neuronal Ceroid-Lipofuscinosis (CLN3-Related) | CLN3 | AR | Reduced Risk | | | Neuronal Ceroid-Lipofuscinosis (<i>CLN5</i> -Related) | CLN5 | AR | Reduced Risk | | | Neuronal Ceroid-Lipofuscinosis (<i>CLN6</i> -Related) | CLN6 | AR | Reduced Risk | | | Neuronal Ceroid-Lipofuscinosis (<i>CLN8</i> -Related) | CLN8 | AR | Reduced Risk | | | Neuronal Ceroid-Lipofuscinosis (<i>MFSD8</i> -Related) | MFSD8 | AR | Reduced Risk | | | Neuronal Ceroid-Lipofuscinosis (PPT1-Related) | PPT1 | AR | Reduced Risk | | | Neuronal Ceroid-Lipofuscinosis (TPP1-Related) | TPP1 | AR | Reduced Risk | | | Niemann-Pick Disease (SMPD1-Related) | SMPD1 | AR | Reduced Risk | | | Niemann-Pick Disease, Type C (<i>NPC1</i> -Related) | NPC1 | AR | Reduced Risk | | | Niemann-Pick Disease, Type C (NPC2-Related) | NPC2 | AR | Reduced Risk | | | Nijmegen Breakage Syndrome | NBN | AR | Reduced Risk | | | Non-Syndromic Hearing Loss (GJB2-Related) | GJB2 | AR | Reduced Risk | | | Odonto-Onycho-Dermal Dysplasia / Schopf-Schulz- | | | | | | Passarge Syndrome | WNT10A | AR | Reduced Risk | | | Omenn Syndrome (<i>RAG2</i> -Related) | RAG2 | AR | Reduced Risk | | | Omenn Syndrome / Severe Combined | | | | | | mmunodeficiency, Athabaskan-Type | DCLRE1C | AR | Reduced Risk | | | Omithine Aminotransferase Deficiency | OAT | AR | Reduced Risk | | | Omithine Transcarbamylase Deficiency | OTC | XL | Reduced Risk | | | Osteopetrosis 1 | TCIRG1 | AR | Reduced Risk | | | Pendred Syndrome | SLC26A4 | AR | Reduced Risk | | | Phenylalanine Hydroxylase Deficiency | PAH | AR | Reduced Risk | | | Polycystic Kidney Disease, Autosomal Recessive | PKHD1 | AR | Reduced Risk | | | Polyglandular Autoimmune Syndrome, Type 1 | AIRE | AR | Reduced Risk | | | Pontocerebellar Hypoplasia, Type 1A | VRK1 | AR | Reduced Risk | | | Pontocerebellar Hypoplasia, Type 6 | RARS2 | AR | Reduced Risk | | | Primary Carnitine Deficiency | SLC22A5 | AR | Reduced Risk | | | Primary Ciliary Dyskinesia (<i>DNAH5</i> -Related) | DNAH5 | AR | Reduced Risk | | | Primary Ciliary Dyskinesia (DNAII-Related) | DNAI1 | AR | Reduced Risk | | | Primary Ciliary Dyskinesia (<i>DNAI2</i> -Related) | DNAI2 | AR | Reduced Risk | | | Primary Hyperoxaluria, Type 1 | AGXT | AR | Reduced Risk | | | Primary Hyperoxaluria, Type 1 Primary Hyperoxaluria, Type 2 | GRHPR | AR | Reduced Risk | | | | HOGA1 | AR | Reduced Risk | | | Primary Hyperoxaluria, Type 3 Progressive Cerebello-Cerebral Atrophy | SEPSECS | AR | Reduced Risk Reduced Risk | | | . , | | | | | | Progressive Familial Intrahepatic Cholestasis, Type 2 | ABCB11 | AR | Reduced Risk | | | Propionic Acidemia (<i>PCCA</i> -Related) | PCCA | AR | Reduced Risk | | | Propionic Acidemia (<i>PCCB</i> -Related) | PCCB | AR | Reduced Risk | | | Pycnodysostosis | CTSK | AR | Reduced Risk | | | Pyruvate Dehydrogenase E1-Alpha Deficiency | PDHA1 | XL | Reduced Risk | | | Pyruvate Dehydrogenase E1-Beta Deficiency | PDHB | AR | Reduced Risk | | | Renal Tubular Acidosis and Deafness | ATP6V1B1 | AR | Reduced Risk | | | Retinitis Pigmentosa 25 | EYS | AR | Reduced Risk | | | Retinitis Pigmentosa 26 | CERKL | AR | Reduced Risk | | | Retinitis Pigmentosa 28 | FAM161A | AR | Reduced Risk | | | Retinitis Pigmentosa 59 | DHDDS | AR | Reduced Risk | | | Rhizomelic Chondrodysplasia Punctata, Type 1 | PEX7 | AR | Reduced Risk | | | Rhizomelic Chondrodysplasia Punctata, Type 3 | AGPS | AR | Reduced Risk | _ | | | | | | | | C-II- Di | 61.0: : | 4.5 | D 1 1511 | | |------------------------------------------------------|----------|-----|--------------|---------------------------------------------------------| | Salla Disease | SLC17A5 | AR | Reduced Risk | | | Sandhoff Disease | HEXB | AR | Reduced Risk | | | Schimke Immunoosseous Dysplasia | SMARCAL1 | AR | Reduced Risk | | | Segawa Syndrome | TH | AR | Reduced Risk | | | Sjogren-Larsson Syndrome | ALDH3A2 | AR | Reduced Risk | | | Smith-Lemli-Opitz Syndrome | DHCR7 | AR | Reduced Risk | | | | | | | SMN1 copy number: 2 | | Spinal Muscular Atrophy | SMN1 | AR | Reduced Risk | SMN2 copy number: 2 | | | | | | c.*3+80T>G: Negative | | Spondylothoracic Dysostosis | MESP2 | AR | Reduced Risk | | | Steel Syndrome Steel Syndrome | COL27A1 | AR | Reduced Risk | | | Stuve-Wiedemann Syndrome | LIFR | AR | Reduced Risk | | | Sulfate Transporter-Related Osteochondrodysplasia | SLC26A2 | AR | Reduced Risk | | | | | | | Tay-Sachs disease enzyme: Non-carrier | | | | | | White blood cells: Non-carrier | | | | | | • Hex A%: 67.1% (Non-carrier: 55.0 - 72.0%; | | | | | | Carrier: <50%) | | | | | | Total hexosaminidase activity: 1949 | | Tay-Sachs Disease | HEXA | AR | Reduced Risk | nmol/hr/mg | | ·· / | | | | Plasma: Non-carrier | | | | | | • Hex A%: 63.6 (Non-carrier: 58.0 - 72.0%; | | | | | | Carrier: <54%) | | | | | | Total hexosaminidase activity: 663 | | | | | | nmol/hr/ml | | | | | | HEXA Sequencing: Negative | | Tyrosinemia, Type I | FAH | AR | Reduced Risk | . 3 3 | | Usher Syndrome, Type IB | MY07A | AR | Reduced Risk | | | Usher Syndrome, Type IC | USH1C | AR | Reduced Risk | | | Usher Syndrome, Type ID | CDH23 | AR | Reduced Risk | | | Usher Syndrome, Type IF | PCDH15 | AR | Reduced Risk | | | Usher Syndrome, Type IIA | USH2A | AR | Reduced Risk | | | Usher Syndrome, Type III | CLRN1 | AR | Reduced Risk | | | Very Long Chain Acyl-CoA Dehydrogenase Deficiency | ACADVL | AR | Reduced Risk | | | Walker-Warburg Syndrome and Other FKTN-Related | | | 5 1 | | | Dystrophies | FKTN | AR | Reduced Risk | | | Wilson Disease | ATP7B | AR | Reduced Risk | | | Wolman Disease / Cholesteryl Ester Storage Disease | LIPA | AR | Reduced Risk | | | X-Linked Juvenile Retinoschisis | RS1 | XL | Reduced Risk | | | X-Linked Severe Combined Immunodeficiency | IL2RG | XL | Reduced Risk | | | Zellweger Syndrome Spectrum (<i>PEX10</i> -Related) | PEX10 | AR | Reduced Risk | | | Zellweger Syndrome Spectrum (PEX2-Related) | PEX2 | AR | Reduced Risk | | | | | AR | | | AR=Autosomal recessive; XL=X-linked ## Test methods and comments Genomic DNA isolated from this patient was analyzed by one or more of the followingmethodologies, as applicable: ## Fragile X CGG Repeat Analysis (Analytical Detection Rate >99%) PCR amplification using Asuragen, Inc. AmplideX® FMR1PCR reagents followed by capillary electrophoresis for allele sizing was performed. Samples positive for FMR1CGG repeats in the premutation and full mutation size range were further analyzed by Southern blot analysis to assess the size and methylation status of the FMR1CGG repeat. ### Genotyping (Analytical Detection Rate >99%) Multiplex PCR amplification and allele specific primer extension analyses using the MassARRAY® System were used to identify variants that are complex in nature or are present in low copy repeats. Rare sequence variants may interfere with assay performance. Multiplex Ligation-Dependent Probe Amplification (MLPA) (Analytical Detection Rate >99%) MLPA® probe sets and reagents from MRC-Holland were used for copy number analysis of specific targets versus known control samples. False positive or negative results mayoccur due to rare sequence variants in target regions detected by MLPA probes. Analytical sensitivity and specificity of the MLPA method are both 99%. For alpha thalassemia, the copy numbers of the *HBA1* and *HBA2* genes were analyzed. Alpha-globin gene deletions, triplications, and the Constant Spring(CS) mutation are assessed. This test is expected to detect approximately 90% of allalpha-thalassemia mutations, varying by ethnicity. Carriers of alpha-thalassemia withthree or more *HBA* copies on one chromosome, and one or no copies on the other chromosome, may not bedetected. With the exception of triplications, other benign alpha-globin genepolymorphisms will not be reported. Analyses of *HBA1* and *HBA2* are performed in association with long-range PCR of the coding regions followed byshort-read sequencing. For Duchenne muscular dystrophy, the copy numbers of all *DMD* exons were analyzed. Potentially pathogenic single exon deletions and duplications are confirmed by a second method. Analysis of *DMD* is performed in association with sequencing of the coding regions. For congenital adrenal hyperplasia, the copy number of the *CYP21A2*gene was analyzed. This analysis can detect large deletions due to unequal meioticcrossing-over between *CYP21A2*and the pseudogene *CYP21A1P*. These 30-kb deletions make up approximately 20% of *CYP21A2*pathogenic alleles. This test may also identify certain point mutations in *CYP21A2*caused by gene conversion events between *CYP21A2*and *CYP21A1P*. Some carriers may not be identified by dosage sensitive methods as this testing cannot detect individuals with two copies (duplication) of the *CYP21A2*gene on one chromosome and loss of *CYP21A2*(deletion) on the other chromosome. Analysis of *CYP21A2* is performed in association with long-range PCR of the coding regions followed by short-read sequencing. For spinal muscular atrophy (SMA), the copy numbers of the *SMN1* and *SMN2* genes were analyzed. The individual dosage of exons 7 and 8 as well as the combineddosage of exons 1, 4, 6 and 8 of *SMN1* and *SMN2* were assessed. Copy number gains and losses can be detected with this assay. Depending onethnicity, 6 - 29 % of carriers will not be identified by dosage sensitive methods as thistesting cannot detect individuals with two copies (duplication) of the *SMN1* gene on one chromosome and loss of *SMN1* (deletion) on the other chromosome (silent 20 carrier) or individuals that carry anintragenic mutation in *SMN1*. Please also note that 2% of individuals with SMA have an *SMN1* mutation that occurred *de novo*. Typically in these cases, only one parent is an SMA carrier. The presence of the c.*380T>G (chr5:70,247.901T>G) variant allele in an individual withAshkenazi Jewish or Asian ancestry is typically indicative of a duplication of *SMN1*. When present in an Ashkenazi Jewish or Asian individual with two copies of *SMN1*, c.*380T>G is likely indicative of a silent (20) carrier. In individuals with twocopies of *SMN1* with African American, Hispanic or Caucasian ancestry, the presence or absence ofc.*380T>G significantly increases or decreases, respectively, the likelihood of being asilent 20 silent carrier. Pathogenic or likely pathogenic sequence variants in exon 7 may be detected during testingfor the c.*380T>G variant allele; these will be reported if confirmed to be located inSMN1 using locus-specific Sanger primers MLPA for Gaucher disease (*GBA*), cystic fibrosis (*CFTR*), and non-syndromic hearing loss (*GJB2/GJB6*) will only be performed if indicated for confirmation of detected CNVs. If *GBA*analysis was performed, the copy numbers of exons 1, 3, 4, and 6 - 10 of the *GBA*gene (of 11 exons total) were analyzed. If *CFTR*analysis was performed, the copy numbers of all 27 *CFTR*exons were analyzed. If *GJB2/GJB6*analysis was performed, the copy number of the two *GJB2*exons were analyzed, as well as the presence or absence of the two upstream deletions of the *GJB2*regulatory region, del(*GJB6*-D13S1830) and del(*GJB6*-D13S1854). ## Next Generation Sequencing (NGS) (Analytical Detection Rate >95%) NGS was performed on a panel of genes for the purpose of identifying pathogenic or likelypathogenic variants. Agilent SureSelectTMQXT technology was used with a custom capture library to target theexonic regions and intron/exon splice junctions of the relevant genes, as well as a number of UTR, intronic or promoter regions that contain previously reported mutations. Sampleswere pooled and sequenced on the Illumina HiSeq 2500 platform in the Rapid Run mode or the Illumina NovaSeq platform in the Xp workflow, using 100 bp paired-end reads. These quencing data was analyzed using a custom bioinformatics algorithm designed and validated in house. The coding exons and splice junctions of the known protein-coding RefSeq genes wereassessed for the average depth of coverage (minimum of 20X) and data quality thresholdvalues. Most exons not meeting a minimum of >20X read depth across the exon are furtheranalyzed by Sanger sequencing. Please note that several genomic regions present difficulties in mapping or obtaining read depth >20X. The exons contained within these regions are noted within Table 1 (as "Exceptions") and will not be reflexed to Sanger sequencing if the mapping quality or coverage is poor. Any variants identified during testing in these regions are confirmed by a second method and reported if determined to be pathogenic or likely pathogenic. However, as there is a possibility of false negative results within these regions, detection rates and residual risks for these genes have been calculated with the presumption that variants in these exons will not be detected, unless included in the MassARRAY® genotyping platform. This test will detect variants within the exons and the intron-exon boundaries of thetarget regions. Variants outside these regions may not be detected, including, but notlimited to, UTRs, promoters, and deep intronic areas, or regions that fall into the Exceptions mentioned above. This technology may not detect all small insertion/deletions and is not diagnostic for repeat expansions and structural genomic variation. In addition, a mutation(s) in a gene not included on the panel could be present in this patient. Variant interpretation and classification was performed based on the American College of Medical Genetics Standards and Guidelines for the Interpretation of Sequence Variants (Richards et al., 2015). All potentially pathogenic variants may be confirmed by either aspecific genotyping assay or Sanger sequencing, if indicated. Any benign variants, likelybenign variants or variants of uncertain significance identified during this analysis willnot be reported. #### Copy Number Variant Analysis (Analytical Detection Rate >95%) Large duplications and deletions were called from the relative read depths on anexon-by-exon basis using a custom exome hidden Markov model (XHMM) algorithm. Deletions orduplications determined to be pathogenic or likely pathogenic were confirmed by either acustom arrayCGH platform, quantitative PCR, or MLPA (depending on CNV size and gene content). While this algorithm is designed to pick updeletions and duplications of 2 or more exons in length, potentially pathogenicsingle-exon CNVs will be confirmed and reported, if detected. #### Exon Array (Confirmation method) (Accuracy >99%) The customized oligonucleotide microarray (Oxford Gene Technology) is a highly-targeted exon-focused array capable of detecting medically relevant microdeletions and microduplications at a much higher resolution than traditional aCGH methods. Each arraymatrix has approximately 180,000 60-mer oligonucleotide probes that cover the entiregenome. This platform is designed based on human genome NCBI Build 37 (hg19) and the CGH probes are enriched to target the exonic regions of the genes in this panel. #### Quantitative PCR (Confirmation method) (Accuracy >99%) The relative quantification PCR is utilized on a Roche Universal Library Probe (UPL) system, which relates the PCR signal of the target region in one group to another. To testfor genomic imbalances, both sample DNA and reference DNA is amplified with primer/probesets that specific to the target region and a control region with known genomic copynumber. Relative genomic copy numbers are calculated based on the standard $\Delta\Delta$ Ct formula. ### Long-Range PCR (Analytical Detection Rate >99%) Long-range PCR was performed to generate locus-specific amplicons for *CYP21A2*, *HBA1* and *HBA2* and *GBA*. The PCR products were then prepared for short-read NGS sequencing and sequenced. Sequenced reads were mapped back to the original genomic locus and run through thebioinformatics pipeline. If indicated, copy number from MLPA was correlated with thesequencing output to analyze the results. For *CYP21A2*, a certain percentage of healthy individuals carry a duplication of the *CYP21A2*gene, which has no clinical consequences. In cases where two copies of a gene are located on the same chromosome in tandem, only the second copy will be amplified and assessed forpotentially pathogenic variants, due to size limitations of the PCR reaction. However, because these alleles contain at least two copies of the *CYP21A2*gene in tandem, it is expected that this patient has at least one functional gene in thetandem allele and this patient is therefore less likely to be a carrier. When anindividual carries both a duplication allele and a pathogenic variant, or multiplepathogenic variants, the current analysis may not be able to determine the phase(cisrans configuration) of the *CYP21A2*alleles identified. Family studies may be required in certain scenarios where phasing isrequired to determine the carrier status. ## Residual Risk Calculations Carrier frequencies and detection rates for each ethnicity were calculated through thecombination of internal curations of >28,000 variants and genomic frequency data from>138,000 individuals across seven ethnic groups in the gnomAD database. Additional variants in HGMD and novel deleterious variants were also incorporated into the calculation. Residual risk values are calculated using a Bayesian analysis combining the *a priori*risk of being a pathogenic mutation carrier (carrier frequency) and the detection rate. They are provided only as a guide for assessing approximate risk given a negative result, and values will vary based on the exact ethnic background of an individual. This report does not represent medical advice but should be interpreted by a genetic counselor, medical geneticist or physician skilled in genetic result interpretation and the relevant medical literature. ### Sanger Sequencing (Confirmation method) (Accuracy >99%) Sanger sequencing, as indicated, was performed using BigDye Terminator chemistry with theABI 3730 DNA analyzer with target specific amplicons. It also may be used to supplementspecific guaranteed target regions that fail NGS sequencing due to poor quality or lowdepth of coverage (<20 reads) or as a confirmatory method for NGS positive results. Falsenegative results may occur if rare variants interfere with amplification or annealing. ## Tay-Sachs Disease (TSD) Enzyme Analysis (Analytical Detection Rate ≥ 98%) Hexosaminidase activity and Hex A% activity were measured by a standard heat-inactivation, fluorometric method using artificial 4-MU-â-N-acetyl glucosaminide (4-MUG) substrate. This assay is highly sensitive and accurate in detecting Tay-Sachs carriers and individuals affected with TSD. Normal ranges of Hex A% activity are 55.0-72.0 for whiteblood cells and 58.0-72.0 for plasma. It is estimated that less than 0.5% of Tay-Sachscarriers have non-carrier levels of percent Hex A activity, and therefore may not be identified by this assay. In addition, this assay may detect individuals that are carriers of or are affected with Sandhoff disease. False positive results may occur if benignvariants, such as pseudodeficiency alleles, interfere with the enzymatic assay. Falsenegative results may occur if both HEXA and HEXB pathogenic or pseudodeficiency variants are present in the same individual. Please note these tests were developed and their performance characteristics were determined by Mount Sinai Genomics, Inc. They have not been cleared or approved by the FDA. These analyses generally provide highly accurate information regarding the patient's carrier or affected status. Despite this high level of accuracy, it should be kept in mindthat there are many potential sources of diagnostic error, including misidentification of samples, polymorphisms, or other rare genetic variants that interfere with analysis. Families should understand that rare diagnostic errors may occur for these reasons. ### SELECTED REFERENCES #### Carrier Screening Grody W et al. ACMG position statement on prenatal/preconception expanded carrierscreening. Genet Med.2013 15:482-3. ## Fragile X syndrome: Chen L et al. An information-rich CGG repeat primed PCR that detects the full range of Fragile X expanded alleles and minimizes the need for Southern blot analysis. *J Mol Diag* 2010 12:589-600. ### Spinal Muscular Atrophy: Luo M et al. An Ashkenazi Jewish SMN1 haplotype specific to duplication alleles improvespan-ethnic carrier screening for spinal muscular atrophy. *Genet Med* . 2014 16:149-56. ### Ashkenazi Jewish Disorders: Scott SA et al. Experience with carrier screening and prenatal diagnosis for sixteenAshkenazi Jewish Genetic Diseases. Hum. Mutat. 2010 31:1-11. ## Duchenne Muscular Dystrophy: Flanigan KM et al. Mutational spectrum of DMD mutations in dystrophinopathy patients:application of modern diagnostic techniques to a large cohort. *Hum Mutat* . 2009 30:1657-66. #### Variant Classification: Richards S et al. Standards and guidelines for the interpretation of sequence variants: ajoint consensus recommendation of the American College of Medical Genetics and Genomicsand the Association for Molecular Pathology. *Genet Med*:2015 May;17(5):405-24 Additional disease-specific references available upon request.